
injected in the indicated SCs of CHEs with high fluid flow rates G' and it was injected 
tangentially and with high velocity, increasing the flow rate of the liquid resulted in an 
increase of the spin rate of the fluid layer and the corresponding component of the total 
hydraulic resistance. 

The observed linear relation between the dimensionless hydraulic resistance and the 
indicated complex is described approximately by the equation AP = 1 + 5kG'/G", which has the 
form (18). This once again confirms the correctness of the approach expounded here, though 
the last equation contradicts the relations proposed in [5, p. 83]. 
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CAPILLARY INSTABILITY OF AN EXTENDING JET 

S. L. Zhbankova and A. V. Kolpakov UDC 532.522.2.621.966.1.977 

The development and breakup of a capillary liquid jet, formed by axisymmetric extension, 
between two surfaces of a volume of liquid was investigated experimentally. The extension 
jet is formed during the operation of a monodispersed-drop generator (MDG) of the type "vibra- 
ting needle." The volume of the liquid participating in the extension process falls in the 
range V 0 = (0.5-15.0)'i0 -II m ~. The characteristics of the process of generation of exten- 
sion jets are established. It is shown that instability of a cylindrical extension jet can 
arise both with and without axisymmetric oscillations. 

i. Flows which can be termed extension jets arise in different processes (for example, 
deformation and fragmentation of dropsin a gas flow, rupture of a connecting neck between 
drops in the process of merging of particles), resulting in axisymmetric extension of a 
liquid neck, i.e., a volume of liquid between two surfaces. In the study of such phenomena 
two aspects are distinguished: the form which the neck assumes under the action of the ex- 
tension forces and surface tension and the breakup of a capillary extension jet. 
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Consider a liquid cylinder which has an arbitrary length and initial radius a 0 and is 
subjected to axisymmetric extension with velocity u. In the cylindrical coordinate system 
(r, ~, z), where the z axis is the symmetry axis of the cylinder, the components of the 
velocity u are given by u r = -(I/2)Gr, ~ = 0, u = Gz (G is a constant). 

It can be shown [i, 2] that under conditions of axisymmetric extension the radius of the 
cylinder decreases with time as 

a = a o exp (--l/2Gt). (1.1) 

In the case of the extension of a liquid neck, however, it should be kept in mind that the 
form of the neck is more complicated than cylindrical. As is well known, the liquid between 
two solid coaxial circular plates with the same radius a and separation 2h assumes an axi- 
symmetric form with constant average curvature of the surface. In addition, the stability 
and form of such a neck are determined only by the volume of the liquid V 0 and the ratio h/a 
[3]. The energetically most favorable (for a given V0) shape is a shape with zero average 
surface curvature - a catenary surface. A liquid film stretched over a ring-shaped coaximl 
base forms such a surface [4]. The catenoid shape is stable if 

0,47 ~ h/a ~ 0 , 6 ~ ;  ( 1 . 2 )  

the right-hand side of the inequalities (1.2) is the condition for the existence of a cate- 
nary surface [3]. Obviously, as the neck stretches at some point h/a will exceed 0.67, i.e., 
the shape of the neck becomes unstable. 

As is well known, a stationary cylinder of radius a becomes unstable when axisymmetric 
oscillations with wavelength %, for which x = 2~a/% < 1 (x is a dimensionless wave number), 
develop. Exponential growth of the amplitude of such oscillations results in fragmentation 
of the cylinder [5]. 

In [i, 2] it is shown that an extension jet also breaks up under the action of axisym- 
metric oscillations and it was found that the instability in this case exhibits some peculiari- 
ties. Thus in [2] it is concluded that a section where the relative amplitude increases 
exists only for oscillations for which the value of the initial wave number x 0 exceeds a 
critical value x~, determined by the physical parameters of the system. 

2. Capillary extension jets with Re ~ 1 were investigated experimentally with the help 
of the MDG [6]. In the operation of the MDG (Fig. i) the tip of the needle i, secured on a 
flexible plate 2, is periodically inserted into a liquid, filling a capillary 3. The plate 
is vibrated by an electromagnet 4, which is powered by a low-frequency generator. The jet 
is extruded from the liquid when the needle is extracted from the capillary. 

Such an object is conveniently studied by using the method of visualization of fast 
processes [7]. In this method the jet is illuminated with a pulsed source, synchronized with 
the generator and drives the oscillations of the plate with the needle. A H-shaped pulse is re- 
quired in order to trigger the flashlamp. Connecting the lamp through the !H-pulse generator, 
which has a pulse-delay unit, makes it possible to observe directly for as long as desired 
any phase of the process with an arbitrarily small step 

In the present work we employed a H-pulse generator which made it possible to delay the 
pulse by 10-G-10 -I sec. This made it possible to measure with high accuracy both the geomet- 
ric parameters of the jet (length s of the jet, the diameter d n of the jet in different sec- 
tions, and the radius R of the drops formed) and the characteristic times t n of different 
processes observed as the jet develops. In addition, the change in the geometric shape of 
the jet was recorded. 

We studied different extension jets (necks), formed by extending the initial volume 
of the liquid in the range V 0 = (0.5-15.0).i0 -zl m 3 with extension rate u = 0.6-2.0 m/see. 
The experiments were performed with distilled water under laboratory conditions] 

3. The development of the neck-jet was investigated from the time t = 0, when the 
needle stretched ~ volume V 0 of the liquid with no replenishment of the capillary. Next, 
the length of the neck s the diameter d of the neck in the central section, and the diameter 
d* of the capillary, i.e., the base diameter, were measured after a time interval At = 2-10 -5 
sec. 

The observations showed that the entire process of development of the neck-jet can be 
divided into several stages (Fig. 2). Up to some time t I the neck assumes a shape close to a 
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catenary surface (Fig. 2a). Hence the extension velocities u are such that the thermodynami- 
cally most favorable relation is established between the volume V 0 of the liquid and the ratio 
s The ratio Z/d* measured at time t I (s = 0.83 • 0.3) agrees well with the condition 
(1.2) of existence of a catenary surface. 

Under further extension conical formations are separated at the needle and capillary 
and the central part of the neck-jet reforms into a cylinder (Fig. 2b). The shape of the 
cones does not change much, and the central cylindrical part is extruded. At the time t o 
necks form on both ends of the cylinder. The central cylindrical part transforms into a 
spindle shape (Fig. 2c). Over the time ~i0 -s sec the diameter of the necks decreases to 
zero. The necks do not always rupture simultaneously. The first and second ruptures can be 
separated by time interval of ~10 -5 sec. We note that the first rupture occurs at the time 
t a. After the necks rupture a drop forms from the mass of liquid separated. 

The measurements showed that the drop volume V d is equal to the volume V I of the cylin- 
drical part of the jet measured at any time between t I and t2: 

v d = v~ +__ o A v .  ( 3 . 1 )  

i.e., the exchange of liquid between the cones and the central part during the extension 
process is very insignificant. 

The ratio of the length s of the cylinder to the diameter d in the central section of 
the cylinder, at time t 2 is independent of the extension rate u: s = 5.5 • 2.5. On the 
contrary, ratio of the length of the neck-jet s to the diameter d, measured at time t 3 de- 
pends linearly on the extension rate u as s = (A + Bu) • 2.5 (A = 4.2 and B = 0.6 m/sec) 
and reaches a maximum value of 18 at u = 2.0 m/sec. The value of the constant A is deter- 
mined by the conditions under which instability appears and the value of the constant B is 
determined by conservation of the volume of the extended liquid. 

4. It was found experimentally that, in accordance with Eq. (i.i), as the neck-jet 
stretches and its diameter decreases, radial perturbations appear. Measurements of the geo- 
metric parameters of the neck-jet were performed starting at a fixed time, when the needle 
extended a column of liquid of volume V 0. The latter measurement was performed at time ta, 
corresponding to the first rupture of the neck-jet. Figure 3 shows the characteristic form 
of the time dependenc eof the neck diameter d(t). The curve was constructed for a neck with 
parameters V 0 = 2.7.10 -II m 3 and u = 2.1 m/sec. It is interesting that the finite extension 
time t 3 is linearly related with the time t~ at which the first maximum appears: 

ta = 2 t  4. ( 4 . 1 )  

The first monotonically decreasing section of the time dependence d(t) corresponds to the 
catenoid stage. Thus the observed oscillations are disturbances which develop on the neck 
accompanying the formation and breakup of the central cylindrical part. 

It is well known that the period T of the characteristic oscillations of different ob- 
jects (jets [5], necks, drops with a bounded contact area [8], and drops [9]) is proportional 

Fig. 2 
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to a combination of physical parameters of the system: 

T ..~ (9S3/~) I/2. (4.2) 

Here o and p are the surface tension and density of the liquid and S is the characteristic 
linear size. In the present case, since the volume V l of the central part of the jet is equal 
to the volume V d of the drop (3.1) we choose the drop radius R as the characteristic size in 
the relation (4.2). 

We now estimate how well the oscillations of the extension jet satisfy the relation 
(4.2). Over the extension time two oscillations with periods T I and T 2 (with T l > T2) , cor- 
responding to the first and second maxima of the curve in Fig. 3, were observed on the jet. 

Figure 4 shows the periods Tl, T2, and T d [the period of the oscillations of the drop 
formed on fragmentation of the neck (T d = 2.2(pR3/o) I/2, R is the drop radius] as functions 
of R 3/2. The lines i, 2, and 3 determine Td, TI, and T 2. One can see that the periods T l 
and T 2 are proportional to R 3/2, i.e., they satisfy the law (4.2): T l ~ T 2 ~ Re/2. In the 
course of the experiments, however, there were cases when the characteristic oscillations of 
the jet could not be separated, and the diameter of the neck-jets decreased exponentially 
according to Eq. (I.IY without any disturbances. 

Figure 5 shows in (d/d0) as a function of time t for such jets with different extension 
velocities (for the lines 1 and 2 u = 0.77 and 1,45 m/sec) and the same initial volume V 0 = 
4.6.10 -11 m 3 (d o is the diameter of the neck at the initial time to). 

The existence of such cases confirms the result of [2] that there exists a critical 
value x~. Suppose that when a jet is formed a random spectrum of initial oscillations forms 
on it. If this spectrum does not have any oscillations with wave number x 0, for which x 0 > 
x 0, then axisymmetric oscillations cannot develop, i.e., the increase in the relative ampli- 
tudes of any oscillations is completely compensated by a decrease in the absolute ;~nplitudes 
as in Eq. (i.i) accompanying extension. 

As experiments show, the initial spectrum of the oscillations is random. For the same 
values of the parameters V 0 and u an extension jet can form by either method. However the 
volume V d of the separated mass of liquid in the case of extension of a jet without oscilla- 
tions (index i) is always less than in the case of breakup of jets with oscillations (index 
z): 

(Vd/Vo)  1 < 0,3 < (Vd/Vo) 2. 

The experiments performed made it possible to determine the characteristics of the de- 
velopment and breakup of necks-jets under axisymmetric extension. 

i, 

2. 

3. 

4. 

5. 
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SHOCK AND EXPANSION WAVES IN TRANSONIC FLOW 

A. S. Fonarev UDC 533.6.011 

The present article is concerned with the propagation of a shock wave and a simple ex- 
pansion wave in transonic flow. Approximate relations are obtained for the flow parameters, 
and the resulting asymptotic dependences are analyzed as the small parameters of transonic 
theory tend to zero. The derived equaitons are used to show that a universal relation of the 
kind that exists in the linear theory of supersonic flow between the optimum permeability 
coefficient and the freestream Mach number M does not exist independently of the flow-ob- 
structing body at M > 1 for the Darcy condition customarily used in the theory of linear in- 
duction of pipe walls. 

Nikol'skii [i] has succeeded in obtaining a universal relation for the optimum perme- 
ability coefficient of a perforated wall in the case of supersonic pipe flow (the influence 
of the wall on the flow in the pipe is assumed to be completely eliminated), satisfying the 
Darcy condition v/u + R = 0 (u and v are the horizontal and vertical components of the per- 
turbed velocity, and R is the perforation ratio). Assuming small deviations of the velocity 
from the freestream velocity, Nikol'skii showed that the relation v/u = -~/M 2 - 1 holds in an 
unbounded flow both in the shock wave and in the expansion wave generated by an obstructing 
body and does not depend on the parameters of the body (M l is the freestream Mach number of 
the supersonic flow). This relation is proposed in [i] as the condition for obtaining non- 
inductive flow in a supersonic pipe, where it is required that the permeability coefficient 
of the walls satisfy the equation Rop t = V~l - i. 

Here we investigate the flow properties in a shock wave and in an expansion wave when 
M • i. We show that a unique functional relation for the optimum permeability coefficient 
of the wall no longer exists for near-sonic supersonic flow, and instead it varies along 
the length of the pipe wall in each flow situation and differs for each experiment. 

i. We consider the exact equations for an oblique compression shock [2, 3] (Fig. I) 

I =  2v (1.1) 

sin 2 g - -  t/M~ ( 1 . 2 )  
tg  0 (%' -5 t)/2 - -  sin2 ~ -~ t /M 2 gtg 8; 

1 + [(%, - -  1)/2] M, ~ sin e ~ ( 1 . 3 )  
M~ s in  2 (8 - -  O) = 

%,M~ sin 2 ~ - -  (V - -  t)12 

Here p is the pressure, O and ~ are the flow turning angle and the angle of inclination of 
the shock front, both measured relative to the x axis, [31 is the supplementary angle measured 
from the y axis, the subscripts 1 and 2 refer to the state of the flow before and after the 
shock front, and y is the adiabatic exponent. 

Transonic flow is known to be characterized by two small parameters, whose interrelation- 
ship is dictated by the particular transonic regime characterized by the similarity param- 
eter. The parameters M 2 - 1 and M 2 - 1 are convenient choices for the analysis of flow 
around a compression shock. The angles 8 << 1 and ~l << 1 are also small in this case and can 
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